Root growth maintenance during water deficits: physiology to functional genomics.

نویسندگان

  • Robert E Sharp
  • Valeriy Poroyko
  • Lindsey G Hejlek
  • William G Spollen
  • Gordon K Springer
  • Hans J Bohnert
  • Henry T Nguyen
چکیده

Progress in understanding the network of mechanisms involved in maize primary root growth maintenance under water deficits is reviewed. These include the adjustment of growth zone dimensions, turgor maintenance by osmotic adjustment, and enhanced cell wall loosening. The role of the hormone abscisic acid (ABA) in maintaining root growth under water deficits is also addressed. The research has taken advantage of kinematic analysis, i.e. characterization of spatial and temporal patterns of cell expansion within the root growth zone. This approach revealed different growth responses to water deficits and ABA deficiency in distinct regions of the root tip. In the apical 3 mm region, elongation is maintained at well-watered rates under severe water deficit, although only in ABA-sufficient roots, whereas the region from 3-7 mm from the apex exhibits maximum elongation in well-watered roots, but progressive inhibition of elongation in roots under water deficit. This knowledge has greatly facilitated discovery of the mechanisms involved in regulating the responses. The spatial resolution with which this system has been characterized and the physiological knowledge gained to date provide a unique and powerful underpinning for functional genomics studies. Characterization of water deficit-induced changes in transcript populations and cell wall protein profiles within the growth zone of the maize primary root is in progress. Initial results from EST and unigene analyses in the tips of well-watered and water-stressed roots highlight the strength of the kinematic approach to transcript profiling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships Between Seedling Growth Rate and Yield of Maize Cultivars Under Normal and Water Stress Conditions

Abstract Effects of water stress on root and leaf growth rates and their relationships with yield under normal and water stress conditions were examined at the Greenhouse and Research Field of Faculty of Agriculture, Kerman University, Iran, using seven maize cultivars including SC-404, SC-704, BC-666, TC-647, DC-370, Jeta and Kordona. During a period of 14 days, water stress at -0.4 MPa was ...

متن کامل

Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an...

متن کامل

Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat1[W]

Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an...

متن کامل

Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits.

Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild...

متن کامل

Effect of water deficits on seed development in soybean : I. Tissue water status.

Water deficits during seed filling often decrease seed size in soybean (Glycine max L.). The physiological basis for this response is not known but may result from direct effects of low seed water potential (Psi(w)) on the seed filling process. To determine whether low Psi(w) occurred in reproductive tissues of soybean, we monitored the water status (Psi(w), Psi(s), and Psi(p)) of leaf, pericar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 407  شماره 

صفحات  -

تاریخ انتشار 2004